
Vietnam National University, Hanoi

University of Engineering and Technology

Faculty of Information Technology

A Unified View Approach to
Software Development Automation

Le Minh Duc

Doctor of Philosophy Dissertation Summary

Hanoi - 2019

Vietnam National University, Hanoi

University of Engineering and Technology

Faculty of Information Technology

A Unified View Approach to
Software Development Automation

Le Minh Duc

Supervisors: Prof. Dr. Nguyen Viet Ha
Dr. Dang Duc Hanh

Discipline: Information Technology
Specialisation: Software Engineering

Doctor of Philosophy Dissertation Summary

Hanoi - 2019

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Dissertation Structure . 2

2 State of the Art 3
2.1 Background . 3

2.1.1 Model-Driven Software Engineering . 3
2.1.2 Domain-Specific Language . 3
2.1.3 Meta-Modelling with UML/OCL . 4
2.1.4 Domain-Driven Design . 4
2.1.5 Model-View-Controller Architecture . 5
2.1.6 Extending MVC to Support Non-functional Requirements 5
2.1.7 Object-Oriented Programming Language . 5
2.1.8 Using Annotation in MBSD . 5

2.2 Domain-Driven Software Development with aDSL . 6
2.2.1 DDD with aDSL . 6
2.2.2 Behavioural Modelling with UML Activity Diagram 6
2.2.3 Software Module Design . 6
2.2.4 Module-Based Software Architecture . 6

3 Unified Domain Modelling with aDSL 8
3.1 DCSL Domain . 8
3.2 DCSL Syntax . 9
3.3 Static Semantics of DCSL . 9

3.3.1 State Space Semantics . 9
3.3.2 Behaviour Space Semantics . 10
3.3.3 Behaviour Generation for DCSL Model . 11

3.4 Dynamic Semantics of DCSL . 11
3.5 Unified Domain Model . 11

i

4 Module-Based Software Construction with aDSL 13
4.1 Software Characterisation . 13
4.2 Module Configuration Domain . 13
4.3 MCCL Language Specification . 14

4.3.1 Conceptual Model . 14
4.3.2 Abstract Syntax . 14
4.3.3 Concrete Syntax . 16

4.4 MCC Generation . 17

5 Evaluation 18
5.1 Implementation . 18
5.2 Case Study: ProcessMan . 18

5.2.1 Process Domain Model . 19
5.2.2 Module Configuration Classes . 19

5.3 DCSL Evaluation . 19
5.3.1 Evaluation Approach . 19
5.3.2 Expressiveness . 19
5.3.3 Required Coding Level . 20
5.3.4 Behaviour Generation . 20
5.3.5 Performance Analysis . 20

5.4 Evaluation of Module-Based Software Construction . 20
5.4.1 Method . 20
5.4.2 MP1: Total Generativity . 21
5.4.3 MP2–MP4 . 21
5.4.4 Analysis of MCCGen . 22

6 Conclusion 23
6.1 Key Contributions . 23
6.2 Future Work . 24

Publications 25

ii

Chapter 1

Introduction

There is no doubt that an important software engineering research area over the last two decades is what
we would generally call model-based software development (MBSD) – the idea that a software can and
should systematically be developed from abtractions, a.k.a models, of the problem domain. MBSD brings
many important benefits, including ease of problem solving and improved quality, productivity and reusability.
Perhaps a most visible software engineering development that falls under the MBSD umbrella is model-driven
software engineering (MDSE). Another more modest, but not less important, development method is domain-
driven design (DDD). While the MDSE’s goal is ambitiously broad and encompassing, DDD focuses more
specifically on the problem of how to effectively use models to tackle the complexity inherent in the domain
requirements. DDD’s goal is to develop software based on domain models that not only truly describe the
domain but are technically feasible for implementation. According to Evans, object-oriented programming
language (OOPL) is especially suited for use with DDD.

The domain model, which is primarily studied under DDD and a type of model engineered in MDSE, is in
fact the basis for specifying what had been called in the language engineering community as domain-specific
language (DSL). The aim of DSL is to express the domain using concepts that are familiar to the domain
experts. A type of DSL, called annotation-based DSL (aDSL), is an application of the annotation feature of
modern OOPLs in DSL engineering. A key benefit of aDSL is that it is internal to the host OOPL and thus
does not require a separate syntax specification. This helps significantly reduce development cost and increase
ease-of-learning. In fact, simple forms of aDSL have been used quite extensively in both DDD and MDSE
communities. In DDD, annotation-based extensions of OOPLs have been used to design software frameworks
that help develop the domain model and the final software.

Our initial research started out with an MBSD-typed investigation into the problem of how to improve the
productivity of object-oriented software development using a Java-based design language for the domain model
and a software architectural model. Placing these works in the context of DDD, MDSE and aDSL allow us to
advance our research to tackle a broader and more important problem concerning the DDD method.

1.1 Problem Statement

DDD is a design method that tackles the complexity that lies at the heart of software development. However,
there are still important open issues with DDD concerning domain modelling and software development from
the domain model. First, the domain model does not define the essential structural elements and lacks support
for behavioural modelling. Second, there has been no formal study of how aDSL is used in DDD. This is despite
the fact that annotation is being used quite extensively in implementations of the method in the existing DDD
software frameworks. Third, there has been no formal study of how to construct software from the domain
model. In particular, such a study should investigate generative techniques (similar to those employed inMDSE)
that are used to automate software construction.

1

Research Aim and Contributions

In this dissertation, we address the issues mentioned in the problem statement by formally using aDSL to not
only construct an essential and unified domain model but generatively construct modular software from this
model. This dissertation makes five main contributions. The first contribution is an aDSL, named domain
class specification language (DCSL), which consists in a set of annotations that express the essential structural
constraints and the essential behaviour of a domain class. The second contribution is a unified domain (UD)
modelling approach, which uses DCSL to express both the structural and behavioural modelling elements.
We choose UML activity diagram language for behavioural modelling and discuss how the domain-specific
constructs of this language are expressed in DCSL. The third contribution is a 4-property characterisation for
the software that are constructed directly from the domain model. These properties are defined based on a
conceptual layered software model. The fourth contribution is a second aDSL, named module configuration
class language (MCCL), that is used for designing module configuration classes (MCCs) in a module-based
software architecture. The fifth contribution is a set of software tools for DCSL, MCCL and the generators
associated with these aDSLs. We implement these tools as components in a software framework, named
jDomainApp. To evaluate the contributions, we first demonstrate the practicality of our method by applying
it to a relatively complex, real-world software construction case study. We then evaluate DCSL as a design
specification language and evaluate the effectiveness of using MCCL in module-based software construction.

1.2 Dissertation Structure

This dissertation is organised into chapters that closely reflect the stated contributions. Chapter 2 systematically
presents the background knowledge concerning the related concepts, methods, techniques and tools. Chapter 3
describes our contributions concerning UD modelling. We first specify DCSL for expressing the essential
structural and behavioural features of the domain class. We then use DCSL to define unified domain model.
After that, we present a set of generic UD modelling patterns that can be applied to construct UDMs for real-
world domains. Chapter 4 explains our contributions concerning module-based software construction. We first
set the software construction context by defining a software characterisation scheme. We then specifyMCCL for
expressing the MCCs and present a generator for generating the MCCs. Chapter 5 presents tool support and an
evaluation of our contributions. Chapter 6 concludes the dissertation with a summary of the research problem,
the contributions that wemade and the impacts that these have on advancing the DDDmethod. We also highlight
a number of ideas and directions for future research in this area.

2

Chapter 2

State of the Art

In this chapter, we present a methodological study of the literatures that are relevant to this dissertation.
Our objectives are (i) to gather authoritative guidance for and to define the foundational concepts, methods and
techniques and (ii) to identify unresolved issues concerning the DDD method that can be addressed in research.

2.1 Background

We begin in this section with a review of the relevant background concepts, methods and techniques concerning
MDSE, DDD, OOPL and aDSL.

2.1.1 Model-Driven Software Engineering

Historically,model-driven software engineering (MDSE) evolves from a general system engineering method
calledmodel-driven engineering (MDE).MDE in turnwas invented on the basis ofmodel-driven architecture
(MDA). Since our aim in this dissertation is to study the development of software systems, we will limit our
focus to just MDSE. Kent et al. define MDA as “...an approach to IT system specification that separates the
specification of system functionality from the specification of the implementation of that functionality on a
specific technology platform”. The two types of specification mentioned in this definition are represented
by two types of model: platform-independent model (PIM) and platform-specific model (PSM). The
former represents the system functionality, while the latter the platform. MDA defines four types of model
transformations between PIM and PSM.

Kent et al. suggest further thatmeta-modelling be used for specifying languages. They state that languages
definitions are just models (called meta-models) with mappings defined between them. Meta-modelling can be
used to specify the abstract and concrete syntax, and the semantics of a language.

Schmidt states that MDE technologies should be developed to combine domain-specific modelling lan-
guage (DSML), transformation engine and generator. DSML is a type of domain-specific language (DSL) that
is defined through meta-modelling. More recently, Brambilla et al define MDSE as “...a methodology for ap-
plying the advantages of modelling to software engineering activities”. The key concepts that MDSE entails are
models and transformations (or “manipulation operations” on models). MDSE can also be integrated into agile,
domain-driven design (DDD) and test-driven development processes. Within the scope of this dissertation, we
are interested in the integration capability of MDSE into DDD.

2.1.2 Domain-Specific Language

DSL is a software language that is specifically designed for expressing the requirements of a problem domain,
using the conceptual notation suitable for the domain. DSLs can be classified based on domain or on the
relationship with the target (a.k.a host) programming language. From the domain’s perspective, DSLs can be

3

classified as being either vertical or horizontalDSL. Regarding to the relationship with the host language, DSLs
can be classified as being internal or external.

2.1.3 Meta-Modelling with UML/OCL

In fact, meta-modelling is a modelling approach that is applied to defining any software language, including both
DSLs and general purpose languages (e.g. Java, C# and the like). In meta-modelling, a language specification
consists in three meta-models and the relations between them. The first meta-model describes the abstract syntax
and is called abstract syntax meta-model (ASM). The second meta-model describes the concrete syntax and
is called concrete syntax meta-model (CSM). The third meta-model describes the semantics and is called
semantic domain meta-model (SDM). A de facto meta-modelling language is Unifield Modelling Language
(UML). UML consists in a family of languages, one of which is UML class diagram. This language, which we
will refer to in this dissertation as class modelling language, is made more precise when combined with the
Object Constraint Language (OCL). We call the combined language UML/OCL.

The Essential ASM of UML. The essential ASM for UML consists of the following meta-concepts: Class,
Attribute, Association, Association End, Operation, Parameter, Association Class and Generalisation. This
ASM suffices for our research purpose in this dissertation.

Approaches for Specifying SDM.Kleppe states four general approaches to defining the SDMof a language:
denotational, translational, pragmatic and operational. Kleppe’s view of the SDM amounts to dynamic
semantics. From the programming language’s perspective, there is also a static semantics of a language, which
does not rely on the run-time. This semantics describes the well-formedness of the language constructs and
thus can be checked at compile-time.

2.1.4 Domain-Driven Design

The general goal of domain-driven design (DDD) is to develop software iteratively around a realistic model of
the application domain, which both thoroughly captures the domain requirements and is technically feasible for
implementation. In this dissertation, we will use DDD to refer specifically to object-oriented DDD. Domain
modelling is concerned with building a domain model for each subject area of interest of a domain. DDD
considers domain model to be the core (or “heart”) of software, which is where the complexity lies.

DDD Patterns. The DDD method provides a set of seven design patterns that address these two main
problem types: (i) constructing the domain model (4 patterns) and (ii) managing the life cycle of domain
objects (3 patterns). The four patterns of the first problem type are: entities, value objects, services and
modules. The three patterns of the second problem type are: aggregates, factories and repositories. In
this dissertation, the term “DDD patterns” will mean to include only the four patterns of the first problem type
and the pattern aggregates. We argue that the other two patterns are generic software design patterns and, as
such, are not specific to DDD.

DDD with DSL. The idea of combining DDD and DSL to raise the level of abstraction of the target code
model has been advocated by both the DDD’s author and others. However, they do not discuss any specific
solutions for the idea. Other works on combining DDD and DSL (e.g. Sculptor) focus only on structural
modelling and use an external rather than an internal DSL.

4

2.1.5 Model-View-Controller Architecture

To construct DDD software from the domain model requires an architectural model that conforms to the generic
layered architecture. A key requirement of such model is that it positions the domain model at the core layer,
isolating it from the user interface and other layers. Evans suggests that the Model-View-Controller (MVC)
architecture model is one such model. Technically, MVC is considered in to be one of several so-called agent-
based design architectures. The main benefit of MVC is that it helps make software developed in it inherently
modular and thus easier to maintain. Software that are designed in MVC consists of three components: model,
view and controller. The internal design of each of the three components is maintained independently with
minimum impact (if any) on the other two components.

2.1.6 Extending MVC to Support Non-functional Requirements

Unfortunately, the Evans’s domain modelling method only focuses on functional requirement. If we were to
apply DDD to develop real-world software, it is imperative that the adopted software architecture supports Non-
functional requirements (NFRs). Three existing works have argued that the MVC architecture is extendable to
support NFRs.

2.1.7 Object-Oriented Programming Language

In his book, Evans uses Java to demonstrate the DDD method. We argue that because Java and another, also
very popular, OOPL named C# share a number of core features, we will generalise these features to form what
we term in this dissertation a “generalised” OOPL. The UML-based ASM of OOPL includes the following core
meta-concepts (supported by boh Java and C#): Class, Field, Annotation, Property, Generalisation,
Method and Parameter.

Mapping OOPL to UML/OCL.We conclude our review of OOPL with a brief discussion of the mapping
between this language and UML/OCL. We call this mapping meta-mapping, because it maps the ASMs of the
two languages. In practice, this mapping is essential for transforming a UML/OCL design into the code model
of a target OOPL (e.g. Java and C#).

2.1.8 Using Annotation in MBSD

After more than a decade since OOPLwas introduced, three noticable methodological developments concerning
the use of annotation in MBSD began to form. The first development is attribute-oriented programming
(AtOP). Another development revolves round behaviour interface specification language (BISL). The third
and more recent development is annotation-based DSL.

Of interest to our dissertation are BISLs that (i) express functional behaviour properties for object oriented
source code and (ii) use some form of annotation to structure the specification. BISLs can be characterised by
the properties that they express and by the software development artefacts that they describe. The behaviour
properties are concerned with the transformation from the pre-condition state to the post-condition state of a
method and the consistency criteria (invariant) of class. Two popular BISLs supporting these properties are
Java Modelling Language (JML) and Spec#.

5

Annotation-Based DSL (aDSL) is an application of the annotation feature of modern OOPLs in DSL
engineering. The name “annotation-based DSL” has been coined and studied only recently by Nosal et al. A few
years earlier, however, Fowler and White had classified this type of language as “fragmentary, internal DSL”.

2.2 Domain-Driven Software Development with aDSL

Recently, we observe that a current trend in DDD is to utilise the domain model for software construction. Given
a domain model, other parts of software, including graphical user interface (GUI), are constructed directly from
it. Further, this construction is automated to a certain extent.

2.2.1 DDD with aDSL

Exiting DDD works mentioned above have several limitations. First, they do not formalise their annotation
extensions into a language. Second, their extensions, though include many annotations, do not identify those
that express the minimal (absolutely essential) annotations. Third, they do not investigate what DSLs are needed
to build a complete software model and how to engineer such DSLs.

2.2.2 Behavioural Modelling with UML Activity Diagram

Evans does not explicitly consider behavioural modelling as part of DDD. This shortcoming remains, inspite
of the fact that the method considers object behaviour as an essential part of the domain model and that UML
interaction diagrams would be used to model this behaviour. In UML (§13.2.1), interaction diagrams (such
as sequence diagram) are only one of three main diagram types that are used to model the system behaviour.
The other two types are state machine (§14) and activity diagram (§15, 16). We will focus in this dissertation
on the use of UML activity diagram for behavioural modelling. We apply the meta-modelling approach with
UML/OCL (see Section 2.1.3) to define an essential ASM of the activity modelling language.

2.2.3 Software Module Design

Traditionally, in object oriented software design, it is well understood that large and complex software requires
a modular structure. According to Meyer, software module is a self-contained decomposition unit of a software.
For large and complex software that is developed using the DDDmethod, the domainmodel needs to be designed
in such a way that can easily cope with the growth in size and complexity. Although the existing works in DDD
support domain module, they do not address how to use it to form software module. Further, they lack a method
for software module development. Not only that, they do not characterise the software that is developed from
the domain model.

2.2.4 Module-Based Software Architecture

In this dissertation, we adopted a module-based software architecture (MOSA), which we developed in
previous works, for software development in DDD. We chose MOSA because it was developed based on the
MVC architecture and specifically for domain-driven software development. MOSA is built upon two key
concepts: MVC-based module class and module containment tree.

6

Definition 2.1. Module class is a structured class that describes the structure of modules in terms of three MVC
components: model (a domain class), a view class and a controller class. Given a domain class C, the view
and controller classes are the parameterised classes View〈T → C 〉 and Controller〈T → C 〉 (resp.); where
View〈T 〉 and Controller〈T 〉 are two library template classes, T is the template parameter.

Definition 2.2. Given two domain classes C and D, a module M = ModuleC (called composite module)
contains another module N = ModuleD (called child module), if

– C participates in a binary association (denoted by A) with D.
– C is at the one end (if A is one-many), at the mandatory one end (if A is one-one) or at either end (if
otherwise).

– Exists a subset of N ’s state scope, called containment scope, that satisfiesM ’s specification.

Definition 2.3. Containment tree is a rooted tree that has the following structure:

– Root node is a composite module (called the root module). Other nodes are modules that are contained
directly or indirectly by the root module. We call these the descendant modules.

– Tree edge from a parent node to a child node represents a module containment.

Module Configuration Method

We view module configuration at two levels. At the module level, a configuration specifies the model, view
and controller components that make up a module class. At the component level, the configuration specifies
properties of each of the three components.

Microservices Architecture

Coincidentally, the MOSA architecture was conceived and proposed at around the same time as the emergence
of a variant of the service-oriented architecture (SOA) namedmicroservices architecture (MSA). According to
Lewis and Fowler, MSA is “. . . an approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an HTTP resource API”. We
argue that MOSA is similar to MSA in the following seven (out of nine) fundamental characteristics of MSA that
were identified by Lewis and Fowler: component-based, “smart” components, domain-driven decomposition
strategy, product not the project, automation, failure isolation and evolutionary design. However, MSA differs
fromMOSA in three aspects: origin, extent of the relationship to DDD and message exchange protocol between
components.

7

Chapter 3

Unified Domain Modelling with aDSL

In this chapter, we describe our first two contributions concerning unified domain (UD) modelling. We first
specify a horizontal aDSL, called DCSL, for expressing the essential structural and behavioural features of the
domain class. We then use DCSL to define unified domain model (UDM). In this, we present a set of generic
UD modelling patterns that can be used to construct UDMs for real-world problem domains. The content of
this chapter has been published in a conference paper (numbered 1) and a journal paper (numbered 4).

3.1 DCSL Domain

Figure 3.1: The abstract syntax model of DCSL.

The DCSL’s domain is a
horizontal (technical) do-
main that is described in
terms of the OOPL meta-
concepts and a number of
essential state space con-
straints and essential be-
haviours that operate un-
der these constraints. We
identified 11 types of con-
straints that are essential to
the conception of domain
class. We name these con-
straints as follow: object
mutability (OM), field mu-
tability (FM), field optional-
ity (FO), field length (FL),
field uniqueness (FU), id
field (IF), min field value (YV), max field value (XV), auto field (TF), min number of linked objects (YL)
and max number of linked objects (XL). We will use the term state space constraints to refer to the constraints,
and the term domain state space (or state space for short) to refer to the state space restricted by them.

An essential behaviour type specifies a pattern of behaviour that is essential for each domain class baring
the essential state space constraints stated above. We analysed the state space constraints in the context of three
core operation types: creator, mutator and observer. We specialised these types for the constraints to yield 11
essential behaviour types: RequiredConstructor, ObjectFormConstructor, AutoAttributeValueGen,
LinkCountGetter, LinkCountSetter, LinkAdder, LinkAdderNew, LinkRemover, LinkUpdater, Getter

and Setter. We say that the behaviour types form the behaviour space of domain class.

8

3.2 DCSL Syntax

Definition 3.1. Ameta-attributeAT is an annotation whose properties structurally describe the non-annotation
meta-concepts T to which it is attached.

Figure 3.1 shows an UML/OCL model for the DCSL’s ASM. It consists of five core meta-attributes, three
auxiliary annotations and an enum named OptType. The five meta-attributes are DClass{Class}, DAttr{Field},
DAssoc{Field}, DOpt{Method} and AttrRef{Method, Parameter}. The three auxiliary annotations are Associate,
AssocType and AssocEndType. The enum OptType captures the type names of the 11 essential behaviour
types. The two meta-attributes DClass and DAttr together possess properties that directly model the first nine
state space constraints. The other two constraints (YL and XL) are modelled by the third meta-attribute named
DAssoc. The remaining two meta-attributes (DOpt and AttrRef) model the essential behaviour of Method.

Definition 3.2. Given a DCSL modelM . An element c : Class ∈ M is a domain class if c is assigned with a
DClass element. An element f : Field ∈M is a domain field if f is assigned with a DAttr element. A domain
field f ∈ M is an associative field if f is assigned with a DAssoc element. An element m : Method ∈ M is
called a domain method ifm is assigned with a DOpt element.

3.3 Static Semantics of DCSL

We define a set of rules that precisely describe the state space constraints and the behaviour types that are
captured by the DCSL’s meta-attributes. These rules form the core static semantics of DCSL. We divide the
static semantic rules into two groups: state space semantics and behaviour space semantics.

3.3.1 State Space Semantics

The state space semantic rules are constraints on the ASM and, thus, we use OCL invariant to precisely define
these rules. The benefit of using invariant is that it allows us to specify exactly the structural violation of the
constraint, which occurs if and only if the invariant is evaluated to false. The OCL invariant is defined on an
OOPL meta-concept and has the following general form:

φ implies E

where E is an OCL expression on the ASM structure that must conditionally be true in order for the constraint
to be satisfied; φ is the condition upon which E is evaluated. It is defined based on some characteristic C of the
meta-concept:

φ =

true, if C is in effect

false, if C is not in effect.

Note that when φ = true then E is evaluated and the result equates the constraint’s satisfaction. Otherwise,
E does not need to be evaluated (can be either true or false). We divide the OCL constraints into two groups:
(i) well-formedness constraints and (ii) state space constraints.

Well-formedness Rules. An important well-formedness rule is rule WF4, which we call generalisation
constraint. This constraint, when combined with the relevant generalisation rules enforced by OOPL, help

9

ensure that the state space constraints are preserved through inheritance. More specifically, rule WF4 is applied
to all the overridden methods that reference a domain field of an ancestor class in the inheritance hierarchy.
Informally, this rule states that each overridden method must be assigned with an DAttr that preserves the
DAttr of the referenced domain field.

Boolean State Space Constraints. The boolean state space constraints include OM, FM, FO, FU, IF
and TF. These constraints are expressed by the following Boolean-typed annotation properties in DCSL:
DClass.mutable and DAttr.mutable, optional, unique, id, auto. Each constraint has the following (more
specialised) form:

X.P implies E

where: φ = X.P, denotes value of the boolean property P of some model element X (X can be a navigation
sequence through the association links between model elements e1.e2. . . en); E is defined as before.

Non-Boolean State Space Constraints. The non-boolean constraints include FL, YV, XV, YL and
XL. These are expressed by the following annotation properties in DCSL: DAttr.length, min, max and
Associate.cardMin, cardMax. Each constraint has the following (more specialised) form:

X.P op v implies E

where: φ = X.P op v, denotes an OCL expression that compares, using operator op, the value of some
property X.P to some value v; E is defined as before.

3.3.2 Behaviour Space Semantics

The behaviour space semantic rules are designed to make precise the static semantics of the behaviour types.
The formalism that we use is based directly on the OOPL’s meta-concepts and, thus, has an added benefit that
it can be implemented easily in a target OOPL. We define the semantic rules based on a structural mapping
between the state space and the behaviour space. This mapping consists of a set of rules, called structural
mapping rules, that map elements of meta-attribute assignments (in the state space) to the behaviour elements
of the behavioural types. Table 3.1 lists the structural mapping rules for the different OptTypes in DCSL

Table 3.1: The core structural mapping rules

No
SSEP(N)s BSEPs

DAttr DAssoc DOpt
Property Stateful func. Property Stateful func. Property Stateful func.

1 auto isNotAuto – – type isObjectFormConstructorTypetype isNotCollectionType – –

2
auto isNotAuto – –

type isRequiredConstructorTypetype isNotCollectionType – –
optional isNotOptional – –

3 mutable isMutable – – type isSetterType
4 auto isAuto – unassign type isAutoAttributeValueGenType

5 type isCollectionType

ascType isOneManyAsc
type isLinkAdderNewType
type isLinkAdderType
type isLinkUpdaterType

endType isOneEnd
type isLinkRemoverType
type isLinkCountGetterType
type isLinkCountSetterType

6 type isDomainType ascType isOneOneAsc type isLinkAdderNewType

10

3.3.3 Behaviour Generation for DCSL Model

Weshow inAlg. 3.1 a programmatic technique that uses the static semantics described in the previous subsections
to automatically generate the behaviour specification of the domain methods.
Alg.3.1 BSpaceGen
Input: c: a domain class whose state space is specified
Output: c is updated with domain method specification (of the behaviour space)

// create constructors
1 FU ⇐ set of non-auto, non-collection-typed domain fields of c
2 FR ⇐ set of non-optional domain fields of c
3 create in c object-form-constructor c1(u1, . . . , um) (uj ∈ FU) // rule 1
4 create/update in c required-constructor c2(r1, . . . , rp) (rk ∈ FR) // rule 2

// create other methods
5 for all domain field f of c do
6 create in c getter for f
7 if f is mutable then create in c setter for f end if // rule 3
8 if def(DAssoc(f)) then
9 if isOneManyAsc(DAssoc(f)) ∧ isOneEnd(DAssoc(f)) then create in c link-related methods for f // rule 5
10 else if isOneOneAsc(DAssoc(f)) then create in c link-adder-new for f end if // rule 6
11 if isAuto(DAttr(f)) ∧ undef(DAssoc(f)) then create in c auto-attribute-value-gen for f end if // rule 4

Theorem 3.1. Behaviour Generation
The input domain class updated by Alg 3.1 is behaviour essential.

Theorem 3.2. Complexity
The worst-case time complexity of Alg 3.1 is linear in number of domain fields of the input domain class.

3.4 Dynamic Semantics of DCSL

In principle, the dynamic semantics of DCSL is derived from the dynamic semantics of the host OOPL,
augmented with the semantics of the DCSL’s meta-attributes. More technically, that semantics describes what
happens when a DCSL model, written as a program in an OOPL, is executed. We will discuss the dynamic
semantics of DCSL under the headings of its three terms (see Definition 3.2).

Domain Class and Method. Domain Class and Domain Method do not affect the dynamic semantics of
Class and Method (resp.).

Domain Field. We observe that a subset of the properties of Domain Field, which are defined in two
meta-attributes DAttr and DAssoc, only have the static semantics explained in Section 3.3. Other properties
carry dynamic semantics. These properties are: (i) DAttr.optional, length, unique, min, max, cardMin,
cardMax and (ii) DAssoc.cardMin, cardMax.

3.5 Unified Domain Model

We use DCSL to construct a unified domain model (UDM). We call the process for constructing a UDM UD
modelling. The term ‘unified’ in UDM refers to a unique representation scheme that we propose, which merges
the class modelling structure and the state-specific activity modelling structure into a unified class model. The
state-specific structure includes activity class and activity node, but excludes activity edge. We first define the
unified class model and then explain how this model is expressed as UDM in DCSL.

11

Definition 3.3. A unified class model is a domain model whose elements belong to the following types:

• activity class: a domain class that represents the activity.
• entity class: a domain class that represents the type of an object node. This class models an entity type.
• control class: captures the domain-specific state of a control node. A control class that represents a
control node is named after the node type; e.g. decision class, join class and so on.

• activity-specific association: an association between each of following class pairs: (i) activity class and
a merge class; (ii) activity class and a fork class; (iii) a merge (resp. fork) class and an entity class that
represents the object node of an action node connected to the merge (resp. fork) node; (iv) activity class
and an entity class that does not represent the object node of an action node connected to either a merge
or fork node.

We will collectively refer to the entity and control classes as component classes.

Figure 3.2: The decisional pattern form (top left) and an application to the enrolment management activity.

Definition 3.4. A unified domainmodel (UDM) is a DCSLmodel that realises a unified class model as follows:

– a domain class ca (called the activity domain class) to realise the activity class.
– the domain classes c1, . . . , cn to realise the component classes.
– let ci1 , . . . , cik

∈ {c1, . . . , cn} realise the non-decision and non-join component classes, then ca, ci1 , . . . , cik

contain associative fields that realise the association ends of the activity-specific associations.

UD Modelling Patterns. To demonstrate the practicality of UDM we define five UD modelling patterns.
We name these patterns (sequential, decisional, forked, joined and merged) after the five primitive activity flows
of the activity modelling language. For example, we show in Figure 3.2 the form of the decisional pattern.

12

Chapter 4

Module-Based Software Construction with aDSL

In this chapter, we explain our contributions concerning module-based software construction. We first set
the software construction context by defining a software characterisation scheme. We then specify another
horizontal aDSL, called MCCL, for expressing the module configuration classes (MCCs). We also discuss
a generator for the MCCs. The software characterisation scheme has been published in a journal paper
(numbered 4). MCCL and the associated generator have been published in a conference paper (numbered 3)
and conditionally accepted in another journal (numbered 5).

4.1 Software Characterisation

We proposed four properties that characterise the software developed in a DDDmethod. Two of these properties
(instance-based GUI and model reflectivity) arise from the need to construct software from the UDM. The other
two properties (modularity and generativity) were derived from well-known design properties.

Instance-based GUI is the extent to which the software uses a GUI to allow a user to observe and work on
instances of the UDM. Model reflectivity is the extent to which the GUI faithfully presents the UDM and its
structure. This property is central to the functionality of the software GUI.

Modularity is the extent to which a software development method possesses the following five criteria:
decomposability, composability, understandability, continuity and protection. We adapt these high-level criteria
to define modularity for software constructed with DDD as follows: Decomposability is the extent to which the
domain classes of the UDM and the modules are constructed in the incremental, top-down fashion. Compos-
ability is the extent to which packaging domain classes into modules helps ease the task of combining them
to form a new software. Understandability is the extent to which the module structure helps describe what a
module is. Continuity is the extent of separation of concerns supported by the module structure. Protection
is the extent to which the domain class behaviour and the user actions concerning the performance of this
behaviour are encapsulated in a module.

Generativity refers to the extent to which the software is automatically generated from the UDM, leveraging
the capabilities of the target OOPL platform. We define generativity in terms of view generativity, module
generativity and software generativity.

4.2 Module Configuration Domain

We consider the domain’s scope to include the module configuration method of the previous work (presented in
Section 2.2.4) and the three enhancements to this method. The first enhancement is to create one master module
configuration. The second enhancement is to introduce the concept of configured containment tree. The third
enhancement is to support the customisation of descendant module configuration in a containment tree.

13

4.3 MCCL Language Specification

4.3.1 Conceptual Model

Figure 4.1 shows the UML class diagram of the conceptual model (CM) of the MCCL’s domain. It consists of
two parts: (i) ModuleConfig and the component configurations and (ii) Tree representing containment trees.

Figure 4.1: The CM of MCCL.

Well-formedness Rules We use OCL invariant to precisely express the well-formedness rules of the CM. We
group the rules by the meta-concepts of the CM to which they are applied. The rule definitions use a number
of shared (library) rules. Syntactically, some rules use DCSL to express constraints on certain meta-concepts’
attributes. This is is more compact and intuitive.

4.3.2 Abstract Syntax

Ourmain objective is to construct an ASM from the CMby transformation, so that the ASM takes the annotation-
based form, suitable for being embedded into a host OOPL. Furthermore, we will strive for a compact ASM that
uses a small set of annotations. To achieve this requires two steps. First, we transform CM into another model,
called CMT , that is compact and suitable for annotation-based representation. Second, we transform CMT into
the actual annotation-based ASM.

CMT : A Compact and Annotation-Friendly Model. Figure 4.2(A) shows the UML class model of CMT .
The detailed design of the key classes are shown in Figure 4.2 (B). The tree structure Tree-Node-RootNode-
Edge of the original CM is replaced by the structure CTree-CEdge in CMT . This new tree representation is
more compact and fits naturally with the idea of the configured containment tree.

14

Figure 4.2: (A-shaded area) The transformed CM (CMT);
(B-remainder) Detailed design of the key classes of CMT .

Figure 4.3: The annotation-based ASM of MCCL.

The Annotation-Based ASM. Although CMT

is suitable for OOPL’s representation, it is still not
yet natively in that form. Figure 4.3 shows the
UML class model of the ASM. In this, the classes
in CMT are transformed into annotations of the
same name. Each domain field is transformed into
an annotation property. The annotations are de-
picted in the figure as grey-coloured boxes. A
key structural difference between ASM and CMT

is the addition of two annotation attachments:
ModuleDesc to Class and AttributeDesc to
Field. A ModuleDesc attachment defines an
MCC because it describes the instantiation of a
ModuleDesc object together with objects of the annotations that are referenced directly and indirectly by
ModuleDesc. The association between Class and Field helps realise the composite association between
ViewDesc and AttributeDesc.

Together, the above features lead us to the following definitions of MCC and MCC model.

Definition 4.1. An MCC is a class assigned with a suitable ModuleDesc, that defines the configuration of a
module class owning a domain class in the UDM. Further, the MCC’s body consists of a set of fields that are
assigned with suitable AttributeDescs. These fields realise the view fields. Exactly one of these fields, called
the title data field, has its AttributeDesc defines the configuration of the title of the module’s view. Other
fields have the same declarations as the domain fields of the domain class and have their AttributeDescs
define the view-specific configuration of these domain fields.

We say that a view field reflects the corresponding domain field. To ease discussion, we will say that the
MCC of a module class owns its domain class.

15

Definition 4.2. AnMCCmodel w.r.t a UDM is a model that conforms to MCCL and consists in a set of MCCs,
each of which is an MCC of an owner module of a domain class in the UDM.

4.3.3 Concrete Syntax

Because MCCL is embedded into OOPL, it is natural to consider the OOPL’s textual syntax as the concrete
syntax of MCCL. From the perspective of concrete syntax meta-modelling approach, the CSM of such textual
syntax is derived from that of OOPL. Further, the core structure of the CSM model is mapped to the ASM. In
addition to this core structure, the CSM contains meta-concepts that describe the structure of the BNF grammar
rules. The textual syntaxes of Java and C# are both described using this grammar. In this dissertation, we will
adopt the Java textual syntax as the concrete syntax of MCCL. For example, Listing 4.1 shows the MCC of
ModuleStudent

Listing 4.1: The MCC of ModuleStudent

1 @ ModuleDesc (name=" ModuleStudent ",
2 modelDesc =@ ModelDesc (model= Student .class),
3 viewDesc =@ ViewDesc (formTitle =" Manage Students ",imageIcon =" student .jpg",
4 view=View.class , parentMenu = RegionName .Tools , topX =0.5 , topY =0.0) ,
5 controllerDesc =@ ControllerDesc (controller = Controller .class ,
6 openPolicy = OpenPolicy .I_C),
7 containmentTree = @CTree (root= Student .class ,
8 stateScope ={"id", "name", " modules "}))
9 public class ModuleStudent {

10 @ AttributeDesc (label=" Student ")
11 private String title;
12 @ AttributeDesc (label="Id",type= JTextField .class , alignX = AlignmentX . Center)
13 private int id;
14 @ AttributeDesc (label="Full name",type= JTextField .class)
15 private String name;
16 @ AttributeDesc (label="Needs help?",type= JBooleanField .class)
17 private boolean helpReq ;
18 @ AttributeDesc (label=" Enrols Into",type= JListField .class
19 ,ref= @Select (clazz= CourseModule .class , attributes ={"name"}),
20 width =100 , height =5)
21 private Set < CourseModule > modules ;
22 }

Listing 4.2 shows a partial MCC of ModuleEnrolmentMgmt that contains just the containment tree. This
MCC contains a customisation of the descendant module typed ModuleStudent.

Listing 4.2: The containment tree of ModuleEnrolmentMgmt

1 @ ModuleDesc (name=" ModuleEnrolmentMgmt ",
2 // other configuration elements (omitted)
3 containmentTree = @CTree (root= EnrolmentMgmt .class ,
4 edges ={ // enrolmentmgmt -> student
5 @CEdge (parent = EnrolmentMgmt .class , child= Student .class ,
6 scopeDesc =@ ScopeDesc (
7 stateScope ={"id", "name", " helpRequested ", " modules "},
8 // custom configuration for ModuleStudent

16

9 attribDescs ={ // Student .id , name are both presented by JLabelField
10 @ AttributeDesc (id="id", type= JLabelField .class)
11 @ AttributeDesc (id="name", type= JLabelField .class , editable =false)
12 }))}))
13 public class ModuleEnrolmentMgmt {
14 // view field configurations (omitted)
15 }

4.4 MCC Generation

Because MCC reflects its domain class, the validity of an MCC is described by a structural consistency between
it and the domain class. The following definition makes clear what this means for MCCs and, more generally,
for the overall MCC model of a software.

Definition 4.3 (Structural Consistency). The owner MCC of a domain class is structurally consistent with that
class if it satisfies the following conditions:

(i) the MCC’s body consists of only the title data field and the view fields that reflect the domain fields of
the domain class

(ii) every reference to a domainfield name in the containment tree specified byModuleDesc.containmentTree

of the MCC is a valid field name either of the domain class or of one of the domain classes of a descendant
module in the actual containment tree

A non-owner MCC is structurally consistent with a domain class if it satisfies condition (ii). An MCC
model is structurally consistent with a domain class if all of its MCCs are structurally consistent with that
class.

We present in Alg. 4.1 the algorithm for the MCC generation function, named MCCGen. This function
takes as input a domain class (c) and generates as output the ‘default’ owner MCC (m) of that class. By ‘default’
we mean the generated MCC contains the default values for all the essential annotation properties. To ease
comprehension, we insert comments at the key locations to help explain the algorithm.
Alg.4.1 MCCGen
Input: c: Domain Class
Output: m: MCC

// STEP 1: create m’s header
1 nc ⇐ c.name, nm = “Module" + nc

2 m ⇐ Class(visibility=“public",name=nm)
// STEP 2: create m’s ModuleDesc

3 do ⇐ ModelDesc(model=c)
4 dv ⇐ ViewDesc(formTitle=“Form: "+nc,domainClassLabel=nc, imageIcon=nc+“.png",view=View) // ¶
5 dc ⇐ ControllerDesc()
6 dm ⇐ ModuleDesc(m):modelDesc=do, viewDesc=dv , controllerDesc=dc // ·
// STEP 3: create m’s view fields (i.e. view field configs)

7 fd ⇐ Field(class=m, visibility=“private",name=“title", type=String) // title
8 create AttributeDesc(fd):label=nc // ¸
9 cF ⇐ {f | f : Domain Field, f ∈ c.fields} // c’s domain fields
10 AddViewFields(m, cF) // create a view field to reflect each c’s domain field
11 return m

Proposition 4.1. The module class induced by an MCC satisfies the model reflectivity property. That is, the
module’s view reflects the structure of the domain class that is owned by the module.

17

Chapter 5

Evaluation

In this chapter, we present our evaluation of the contributions made in this dissertation. We first describe
an implementation of the research contributions. We then describe a real-world software development case
study. After that, we present an evaluation for DCSL and an evaluation for module-based software construction
with MCCL. The first evaluation has been published in a journal paper (numbered 4) and the second has been
conditionally accepted in another journal (numbered 5). The DDD patterns that are used in the second evaluation
had been published in a conference paper (numbered 2).

5.1 Implementation

We implemented DCSL, MCCL and the generators and tools associated with these aDSLs as components of
the jDomainApp framework. The implementation language is Java version 8.

UD Modelling. We implemented DCSL as part of the modelling component of jDomainApp. As for the
BSpaceGen function, we implemented it as an add-on component of jDomainApp. Our implementation uses
two third-party libraries: (i) JavaParser: to parse the Java code model of the domain model into a syntax tree
for manipulation and (ii) Eclipse’s libraries for OCL and EMF: to generate and validate the OCL pre- and
post-conditions of domain methods.

Further, we implemented a software tool, named DomainAppTool, whose aims are two-fold: (i) to enable
the use of DCSL in developing the domain model and (ii) to provide a basic level of support for our proposed
software development phases. In principle, the tool takes as input a (possibly incomplete) domain model and
automatically generates a set of software modules and a GUI-based software composing of these modules.

Module-Based Software Construction. We implemented MCCL as part of the module modelling compo-
nent of jDomainApp. We implemented MCCGen as an add-on component of jDomainApp.

Figure 5.1: The Process Structure Module Model.

5.2 Case Study: ProcessMan

We present a relatively complex case
study, named ProcessMan (process man-
agement). The aim is to investigate how
our proposed DDDAL method would help a
university faculty to effectively manage its
organisational processes. A key objective is
to construct a process model and an MCC
model that are sufficiently expressive for the
faculty’s purpose.

18

We apply the case study research method and treat our case study as an explanatory type. We summarise
below the results of our ProcessMan case study.

5.2.1 Process Domain Model

The domain model of ProcessMan consists of the following four domain modules: processstructure,
teaching, processapplication and hr. These domain modules are all named model, each of which is
placed inside the directory structure of a software module. For example, the right hand side of Figure 5.1 shows
the domain module of the package processstructure. It consists of five classes: Process, Task, Action,
Task4Subject and Action4Subject.

5.2.2 Module Configuration Classes

In ProcessMan, MCCs are created and managed within each domain module’s boundary. Each domain class
in a domain module is used to create one MCC. The left hand side of Figure 5.1 shows five MCCs of the domain
module processstructure.

5.3 DCSL Evaluation

We focus our evaluation of UD modelling on DCSL.

5.3.1 Evaluation Approach

We evaluate DCSL from two main perspectives: language and generativity support.
Language Evaluation. We consider DCSL as a specification language and adapt the following three

criteria for evaluating it: expressiveness, required coding level and constructibility. Constructibility is evaluated
separately as part of generativity support (discussed next).

Generativity Support. This evaluation is to measure the extent to which DCSL supports the generation
of domain class specification, via function BSpaceGen. We evaluate using two properties: performance and
behaviour generation.

5.3.2 Expressiveness

On the Minimality of DCSL.We reason that DCSL, as defined in this dissertation, is minimal with regards to
the set of state space constraints and the essential behaviour that operate on them.
Comparing to DDD Patterns. DCSL terms form a technical design language, which realises the high-level
design structures described in the DDD patterns.
Comparing to DDD Frameworks.

DCSL>essentially AL, XL

We show that DCSL is essentially more expressive than two languages employed in two DDD frameworks:
Apache-ISIS (language: AX) and OpenXava (language: XL).
Comparing to Third-Party Annotation Sets. Regarding to the built-in annotation set of Bean Validation
(BV):

19

DCSL>essentially BV

Further, BV has the following limitations. First, it is not a language (lacks meaning of the constraints). Second,
it is not as modular as DCSL (no distinction is made between state and behaviour spaces). Third, it lacks a
behaviour generation technique.

5.3.3 Required Coding Level
DCSL>essentially AL, XL

Although DCSL has the highest max-locs (11) and typical-locs (9), its subtotals for Domain Class and Domain
Field (4 and 2 resp.) are actually lower than AL (6 and 3) and XL (8 and 3). The contributing factor is the set
of 7 mandatory properties for Associative Field; all are essential. We thus argue that the increase in DCSL’s
RCL is reasonable price to pay for the extra expressiveness.

5.3.4 Behaviour Generation

ALandXLare excluded fromevaluation because they do not support behavioural generation. As forBSpaceGen,
the behaviours of 100%of themethods are generated. Further, the generatedmethod headers follow the JavaBean
convention. The generativity is amplified with the support for activity domain class.

5.3.5 Performance Analysis

Based on the linear complexity result of Alg. 3.1, we conclude that BSpaceGen is practically capable of handling
domain classes with large state spaces.

5.4 Evaluation of Module-Based Software Construction

Our objective is to evaluate the extent to which MCCL helps automatically generate software modules. To
achieve this, we define a framework for developer-users of MCCL to precisely quantify module generativity
for the application domains. In the framework, we will identify the general module patterns and discuss how
module generativity can be measured for each of them. Further, we evaluate the correctness and performance
of function MCCGen.

5.4.1 Method

The module generativity procedure consists of two steps: (i) generate the MCC of the module and (ii) generate
themodule from theMCC.The first step is performed semi-automatically by functionMCCGen. The second step
is performed semi-automatically by the module interpreter of jDomainApp. We measure module generativity
by taking a weighted average of the generativity values of these steps. To facilitate the measurement, we classify
each type of customised elements by the component type: view elements and controller elements. We omit the
model component (the domain class) of each module from measurement because it is developed before hand.

20

Table 5.1: Module pattern classification

MPs
View Controller

Configuration Code Configuration Code
Def Cust Cust Def Cust Cust

MP1 3 3

MP2 3 3 (3)
MP3 3 (3) 3

MP4 3 (3) 3 (3)

Table 5.1 describes a classification ofmodule pat-
terns (MPs), which is based on valid customisa-
tion scenarios. A valid customisation scenario cor-
rectly describes a combination of element types
that need or need not be customised. In the ta-
ble, the former case is abbreviated as “Cust” (cus-
tomised), while the latter case is abbreviated as
“Def ” (default). Note that to ease reuse and im-
prove module generativity over time, we systemat-
ically define the customised code components in the second step around design patterns that extend the MOSA’s
functionality. For controller, a customised component is a pattern-specific module action, which is an action
whose behaviour is customised to satisfy a new design requirement. For view, a customised component is a
new view component that improves the usability of the module view.

We construct a shared general formula for the generativity factors of both steps of the procedure. Denote
by V and C the amounts of code created for the view and controller components (resp.) and by V ′ and C′ the
amounts of customised code that need to be manually written for these same two components (resp.). Further,
letW = V + C be the total amount of code created for the view and controller. Denote by m the generativity
factor, then we measurem in (0,1] by the following formula:

m = (V − V ′) + (C − C′)
W

= 1− V
′ + C′

W
(5.1)

Denote bym1,m2 the generativity factors of steps 1 and 2 (resp.). We use subscripts 1 and 2 to denote the
components ofm1 andm2 (resp.). We measure the module generativityM (also in (0,1]) by:

M = αm1 + (1− α)m2 (where: α = W1
W1 +W2

, 1− α = W2
W1 +W2

) (5.2)

In Formula 5.2, the higher the value ofM , the higher the module generativity. Our choice of weights means
to give higher emphasis to the component (m1 or m2) that dominates in the impact on M . In practice, the
dominating factor is typicallym2, becauseW1 (configuration) is typically much smaller thanW2 (actual code).

5.4.2 MP1: Total Generativity

In this special MP, we achieve 100% generativity, because V ′
1 = V ′

2 = 0, C′
1 = C′

2 = 0 and, thus,M = m1 =
m2 = 1. A reference software that is constructed only by modules belonging to this MP is implemented by a
jDomainApp tool, which we call DomainAppTool.

5.4.3 MP2–MP4

These three MPs involve customising view and/or controller at various extents. We first develop a shared
formula for all three MPs. After that, we discuss how it is applied to each MP. Denote byW and w the numbers
of customised configuration elements of a module and of a view field (resp.).

21

Definition 5.1. The configuration customisation factor of a module, whose view contains s number of view
fields, is:

C = (W +
∑s

i=1wi)
Assuming that the module’s containment tree has n number of descendant modules, whose configurations

need to be customised. Let Ck be the configuration customisation factor of the kth descendant module, then:

m1 = 1− C +
∑n

k=1Ck

W1
(5.3)

Denote by P and p the numbers of lines of code (LOCs) for the customised components of a module and of
a view field (resp.). Note that code customisation occurs at both the module level and the view field level.

Definition 5.2. Given that a module has T number of customised components at the module level, s number
of view fields and ti number of customised components for the ith view field of the module view. The code
customisation factor of the module is:

D =
∑T

i=1 Pi +
∑s

i=1
∑ti

j=1 pij

We derive the following formula form2 (n is the number of customised descendant modules):

m2 = 1− D +
∑n

k=1Dk

W2
(5.4)

MP2. m1 is measured based only on counting the number of customised controller configuration elements. If
there exists a non-empty sub-set of these elements that require customising module actions, thenm2 is measured
based on counting the LOCs of the customised components of these actions.

MP3. m1 is measured based only on counting the number of customised view configuration elements. If there
exists a non-empty sub-set of these elements that require creating new view components, thenm2 is measured
based on counting the LOCs of these components.

MP4. m1 is measured based on counting the numbers of customised view and controller configuration
elements. If there exists a non-empty sub-set of these elements that require creating new components (view or
module action), thenm2 is measured based on counting the LOCs of these components.

An important insight that we draw is that module generativity is high (which is desirable) ifm2 is high and
dominates m1. This can be achieved with our method because (i) MOSA’s capability is improved over time
through design patterns and (ii) α is small (due tom2’s domination, as explained in Section 5.4.1).

5.4.4 Analysis of MCCGen

In this section, we summarise the correctness and performance evaluation of function MCCGen.

Theorem 5.1 (MCCGen Correctness). MCCGen correctly generates the ownerMCC of the input domain class.
This MCC is structurally consistent with the domain class.

Theorem 5.2 (MCCGen Complexity). MCCGen has a linear worst-case time complexity of O(F), where F is
the number of domain fields of the input domain class.

We can conclude, therefore, that MCCGen is scalable to handle domain classes with large state spaces.

22

Chapter 6

Conclusion

The advent of model-based software development has, over the past twenty years, drastically changed the
way software is engineered. Two closely-related MBSDmethods that arguably have firmly cemented their place
in the industry are MDSE and DDD. The DDD method aims to address the problem of how to effectively use
models to tackle the domain’s complexity which it considers to be at the heart of software. The domain models
should not only express the domain requirements well but be technically feasible for implementation.

Despite the fact that a substantial body of work has been written and a number of software frameworks have
been developed for DDD, there are still significant open issues to be addressed. These issues became clear to us
when we analysed DDD from the perspectives of a number of closely-related software engineering paradigms
and methods (which include not only MDSE but OOPL, AtOP, BISL and aDSL). They motivated us to conduct
this research, whose aim is to develop solutions for tackling the identified issues. The underlying theme of our
approach is to use aDSL in DDD to design the core domain model and the modules that make up software
constructed from the model.

The solutions that we have presented in this dissertation form an enhanced DDD method, which we believe
makes the original method not only more concrete but more complete for software development purposes.
After summarising the key contributions of this dissertation, we will discuss a number of directions for future
development.

6.1 Key Contributions

This dissertation makes five key contributions towards enhancing the DDD method. The first contribution is an
aDSL, named DCSL, which consists in a set of annotations that express the essential structural constraints and
the essential behaviour of domain class. The second contribution is a unified domain modelling approach,
which uses DCSL as the underlying language to express both the structural and behavioural modelling elements.
Specifically, we have chosen UML activity diagram language for behavioural modelling and discussed how
the state-specific features of this language are expressed in DCSL. The third contribution is a 4-property
software characterisation that provides technical guidelines for the software that are constructed directly from
the domain model. The four properties are instance-based GUI, model reflectivity, modularity and generativity.
The fourth contribution is another aDSL, named MCCL, that is used for designing the software modules in the
module-based software architecture. More precisely, MCCL is used to express the module configuration classes
(MCCs). An MCC provides an explicit class-based definition of a set of module configurations of a given
module class. The fifth contribution is an implementation of DCSL, MCCL and the generators associated with
these aDSLs as components in the jDomainApp software framework.

23

6.2 Future Work

We argue that our research lays a foundation for further works to be conducted towards enhancing the DDD
method. We highlight below a number of directions for these works.

MOSA and Software Construction.

– Extending MOSA to support other NFRs
– Developing an aDSL for the activity graph component of activity modelling language
– Designing an aDSL for software construction

Integration into Software Development Processes. We argue that our method would particularly be suited
for integration into iterative and agile development processes. Further, for both iterative and agile processes,
tools and techniques from MDSE would be applied to enhance productivity and tackle platform variability.

Industrial-Scale Applications. This dissertation still lacks industrial-scale applications of the method (to
develop large-scale, complex software). To better prepare for these, we would recommend tackling the following
objectives in near- and medium-term research:

– Investigating the integration of the overall method in well-known IDE, e.g. Eclipse
– Investigating an automated mechanism for handling domain model evolution
– Evaluating MCCL as a language

Software Engineering Education. Last but not least, because of the strong connection of our method to
OOPL it would be interesting to investigate how our method is applied in teaching software engineering course
modules. Applying our method in education would also help increase the awareness of the method and its
adoption in practice. To achieve this, further work should be conducted to integrate our method into university’s
software engineering curriculumns. In addition, other works should be conducted to integrate the method into
teaching at the entry level, which includes object-oriented programming course modules.

24

Publications

During the development of this dissertation, the author has published in international conferences and
journals. The last item in the following list has been submitted for review in an international journal:

1. D. M. Le, D.-H. Dang, V.-H. Nguyen, “Domain-Driven Design Using Meta-Attributes: A DSL-Based
Approach”, in: Proc. 8th Int. Conf. Knowledge and Systems Engineering (KSE), IEEE, 2016, pp. 67–72.

2. D. M. Le, D.-H. Dang, V.-H. Nguyen, “Domain-Driven Design Patterns: A Metadata-Based Approach”,
in: Proc. 12th Int. Conf. on Computing and Communication Technologies (RIVF), IEEE, 2016, pp.
247–252.

3. D. M. Le, D. H. Dang, V. H. Nguyen, “Generative Software Module Development: A Domain-Driven
Design Perspective”, in: Proc. 9th Int. Conf. on Knowledge and Systems Engineering (KSE), 2017, pp.
77–82.

4. D. M. Le, D.-H. Dang, and V.-H. Nguyen, “On Domain Driven Design Using Annotation-Based Domain
Specific Language,” Journal of Computer Languages, Systems & Structures, vol. 54, pp. 199–235, 2018.

5. D. M. Le, D.-H. Dang, V.-H. Nguyen, “Generative Software Module Development for Domain-Driven
Design with Annotation-Based Domain Specific Language”, (Conditionally Accepted) Journal of Infor-
mation and Software Technology, 2019.

25

https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/RIVF.2016.7800302
https://doi.org/10.1109/KSE.2017.8119438
https://doi.org/10.1109/KSE.2017.8119438
https://doi.org/10.1016/j.cl.2018.05.001
https://doi.org/10.1016/j.cl.2018.05.001
https://drive.google.com/open?id=1LBE0JqOaONBtbf5mBME6cjW29D7lrxEJ
https://drive.google.com/open?id=1LBE0JqOaONBtbf5mBME6cjW29D7lrxEJ

	Title-Cover
	Title-Inner
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Dissertation Structure

	2 State of the Art
	2.1 Background
	2.1.1 Model-Driven Software Engineering
	2.1.2 Domain-Specific Language
	2.1.3 Meta-Modelling with UML/OCL
	2.1.4 Domain-Driven Design
	2.1.5 Model-View-Controller Architecture
	2.1.6 Extending MVC to Support Non-functional Requirements
	2.1.7 Object-Oriented Programming Language
	2.1.8 Using Annotation in MBSD

	2.2 Domain-Driven Software Development with aDSL
	2.2.1 DDD with aDSL
	2.2.2 Behavioural Modelling with UML Activity Diagram
	2.2.3 Software Module Design
	2.2.4 Module-Based Software Architecture

	3 Unified Domain Modelling with aDSL
	3.1 DCSL Domain
	3.2 DCSL Syntax
	3.3 Static Semantics of DCSL
	3.3.1 State Space Semantics
	3.3.2 Behaviour Space Semantics
	3.3.3 Behaviour Generation for DCSL Model

	3.4 Dynamic Semantics of DCSL
	3.5 Unified Domain Model

	4 Module-Based Software Construction with aDSL
	4.1 Software Characterisation
	4.2 Module Configuration Domain
	4.3 MCCL Language Specification
	4.3.1 Conceptual Model
	4.3.2 Abstract Syntax
	4.3.3 Concrete Syntax

	4.4 MCC Generation

	5 Evaluation
	5.1 Implementation
	5.2 Case Study: ProcessMan
	5.2.1 Process Domain Model
	5.2.2 Module Configuration Classes

	5.3 DCSL Evaluation
	5.3.1 Evaluation Approach
	5.3.2 Expressiveness
	5.3.3 Required Coding Level
	5.3.4 Behaviour Generation
	5.3.5 Performance Analysis

	5.4 Evaluation of Module-Based Software Construction
	5.4.1 Method
	5.4.2 MP1: Total Generativity
	5.4.3 MP2–MP4
	5.4.4 Analysis of MCCGen

	6 Conclusion
	6.1 Key Contributions
	6.2 Future Work

	Publications

